Influence of the 33 kDa manganese-stabilizing protein on the structure and substrate accessibility of the oxygen-evolving complex of photosystem II.
نویسندگان
چکیده
The 33 kDa manganese-stabilizing extrinsic protein binds to the lumenal side of photosystem II (PS II) close to the Mn(4)Ca cluster of the oxygen-evolving complex, where it limits access of small molecules to the metal site. Our previous finding that the removal of this protein did not alter the magnetic coupling regime within the manganese cluster, measured by electron spin-echo envelope modulation [Gregor, W., and Britt, R. D. (2000) Photosynth. Res. 65, 175-185], prompted us to examine whether this accessibility control is also true for substrate water, using the same pulsed EPR technique. Comparing the deuteron modulation of the S(2)-state multiline signal of PS II membranes, equilibrated with deuterated water (D(2)O) after removal or retention of the 33 kDa protein, we observed no change in the number and the distance of deuterons magnetically coupled to manganese, indicating that the number and distance of water molecules bound to the manganese cluster are independent of bound 33 kDa protein in the S(1) state, in which the sample was poised prior to cryogenic illumination. A simple modulation depth analysis revealed a distance of 2.5-2.6 A between the closest deuteron and manganese. These results are in agreement with our refined X-ray absorption analysis. The manganese K-edge positions, reflecting their oxidation states, and the extended X-ray absorption fine structure amplitudes and distances between the manganese ions and their oxygen and nitrogen ligands (1.8, 2.7, and 3.3-3.4 A) were independent of bound 33 kDa protein.
منابع مشابه
Increased tolerance to thermal inactivation of oxygen evolution in spinach Photosystem II membranes by substitution of the extrinsic 33-kDa protein by its homologue from a thermophilic cyanobacterium.
Photosynthetic oxygen evolution is an extremely heat-sensitive process and incubation of spinach Photosystem II (PSII) membranes at 40 degrees C for only several minutes leads to its complete inactivation. Substitution experiments of the spinach 33-kDa manganese stabilizing protein by a homologue protein, isolated either from the thermophilic cyanobacterium Phormidium laminosum, or from Escheri...
متن کاملSupramolecular structure of the photosystem II complex from green plants and cyanobacteria.
Photosystem II (PSII) complexes, isolated from spinach and the thermophilic cyanobacterium Synechococcus elongatus, were characterized by electron microscopy and single-particle image-averaging analyses. Oxygen-evolving core complexes from spinach and Synechococcus having molecular masses of about 450 kDa and dimensions of approximately 17.2 x 9.7 nm showed twofold symmetry indicative of a dime...
متن کاملRebinding of the 33 kDalton Polypeptide of Photosystem II to the D-l/D-2 Sub-Core Complex
The photosystem II (PS-II) reaction center is composed of several polypeptides which contain carotenoids and chlorophyll. Three pigment-free extrinsic proteins, with masses 33, 24, 18 kDa, are involved in the oxygen evolving system [1]. One of the extrinsic proteins, a 33 kDa polypeptide, accelerates a dark step in the oxygen-evolving reaction [2] and preserves the binding of the Mn atoms to th...
متن کاملThe double mutation ΔL6MW241F in PsbO, the photosystem II manganese stabilizing protein, yields insights into the evolution of its structure and function.
The W241F mutation in spinach manganese-stabilizing protein (PsbO) decreases binding to photosystem II (PSII); its thermostability is increased and reconstituted activity is lower [Wyman et al. (2008) Biochemistry 47, 6490-6498]. The results reported here show that W241F cannot adopt a normal solution structure and fails to reconstitute efficient Cl(-) retention by PSII. An N-terminal truncatio...
متن کاملOxygen evolving complex in photosystem II: better than excellent.
The Oxygen Evolving Complex in photosystem II, which is responsible for the oxidation of water to oxygen in plants, algae and cyanobacteria, contains a cluster of one calcium and four manganese atoms. This cluster serves as a model for the splitting of water by energy obtained from sunlight. The recent published data on the mechanism and the structure of photosystem II provide a detailed archit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Biochemistry
دوره 44 24 شماره
صفحات -
تاریخ انتشار 2005